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Abstract. The components of the diffusive thermal conductivity tensor of superfluid 3He-A 
are calculated by using approximate collision integrals at low temperatures. The energy and 
temperature dependence of the quasi-particle relaxation time are obtained. The parameter 
I., plays an important role in determining the temperature dependence of the diffusive 
thermal conductivity coefficients. 

1. Introduction 

Since the discovery of superfluid phases of 3He, investigation of the coefficients of the 
diffusive thermal conductivity of the A phase has received less attention. Most theoretical 
efforts have been concentrated on the evaluation of the diffusive thermal conductivity 
of the B phase. In [l, 21 the Boltzmann equation was solvent in the low-temperature 
limit for thermal conductivity for this phase exactly. It was found that the diffusive 
thermal conductivity varies with temperature as T-l, the same as in the normal state. In 
[3], by using an approximate collision integral which gives nearly exact results in the limits 
T+ 0 and T+ T,, this coefficient was obtained for the whole range of temperatures 
numerically. In [4], by choosing an appropriate trial solution, the Boltzmann equation 
was solved variationally for the diffusive thermal conductivity of the B phase. 

The purpose of this paper is to use the approximate collision integral in [3] and to 
modify it for the diffusive thermal conductivity of the A phase of liquid 3He. The 
components of the diffusive thermal conductivity tensor are formulated in terms of the 
Bogoliubov quasi-particle relaxation time for the whole range of temperatures. The 
evaluation of these components against temperature needs numerical calculations which 
we defer to elsewhere and here we compute them at low temperatures. In D2, we 
formulate the problem, the components of diffusive thermal conductivity are obtained 
at low temperatures in 9 3. Section 4 is allocated to discussion and concluding remarks. 

2. Formulation of the problem 

The diffusive thermal conductivity tensor Ki, is defined by 

Ji = K ,  aT/ari (1) 
where J is the diffusive heat current. It is noted that, in addition to heat transfer by a 
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random diffusive process of the thermal excitations described by equation ( l ) ,  there is 
a convective contribution to the heat current in a superfluid, even in the absence of mass 
flow, owing to the possibility of normal-superfluid counterflow. At low temperatures, 
this contribution is negligible [3 ,5]  and the measurement of the components of thermal 
conductivity at these temperatures is more meaningful than the measurement of the 
thermal conductivity components in the vicinity of T,. 

The diffusive heat current may be written in terms of the quasi-particle distribution 
functions 6np as 

J = E ~ V ~  ani, ( 2 )  
P 

where Vp is the Bogoliubov quasi-particle velocity and an; = 6np - n; 6Ep characterises 
the deviation from local equilibrium. In the presence of the stationary diffusive heat 
current the streaming term in the Boltzmann equation may be written as 

Following [ 3 ] ,  the collision integral may be expressed as 

where zp is the quasi-particle relaxation time, and the 'in scattering' term ZF of the 
collision integral, is written for the A phase as 

where 

with 
hl = 1 + ( 2 / ( ~ ) ) ( ~ ( e ,  47) COS e) 

d Q  A(6,47) 
(A) = 1- 4Jd cos(e/2). 

Introducing a dimensionless function qp by 

an; = i[(P ' 4)/m*l (&p/Ep). I , (EplTkB)GTQlp 
the Boltzmann equation may be written as 

(7) 

By substituting equation ( 7 )  in equation (2) and comparing with equation (l), we have 

where 
K = - (3n/ Tm * ) (( p ,  p ,  .E; ni, qp)) (9) 

From equations (8) and (9), after some algebra, we obtain finally 
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As we said previously, for evaluation of the diffusive thermal conductivity coefficient 
against temperature, one needs to use numerical methods which we defer to elsewhere. 
In 0 3, we evaluate them at low temperatures. 

3. The components of the diffusive thermal conductivity tensor at low temperatures 

The diffusive thermal conductivity tensor for a system with uniaxial symmetry can be 
written in terms of the components of the symmetry axis i with two coefficients 41 and 
K ,  : 

K,, = KiiIll, + K,(S,  - Ill,). (11) 

By taking the polar axis along i, we have 41 = K,, and K ,  = K,, = Kyy.  To compute 
these coefficients at low temperatures, say T c / T F e  TITc< 1, we use the fact that the 
function n j  in the integrands of equation (10) is almost non-zero only for the values of 
sin 6, = 0 since ep - kBT. In the following, we first calculate the Bogoliubov quasi- 
particle relaxation time zp for the ABM state at low temperatures. 

In a normal Fermi liquid the total quasi-particle number is conserved and therefore 
the only allowed scattering processes are those in which the number of quasi-particles 
in the final state is the same as the number in the initial state. At low temperatures the 
density of excitations is low, and consequently the most important processes are those 
in which two quasi-particles scatter. The quasi-particle relaxation time can therefore be 
written as [6] 

x n!(1 - nS)(I  - n:). 

By following the analysis of [7], equation (12) transforms into 

where the integration over the energy variables can be done exactly [8], 6’ is the angle 
betweenp, andp, and q is the angle between the planes spanned by (pl, p z )  and (p3, p4). 

In a superfluid the quasi-particle number is not conserved and other processes as well 
as two-quasi-particle scattering processes can occur. For example, one quasi-particle 
can decay into three, or three quasi-particles can coalesce to produce one. The interaction 
between the quasi-particles in the superfluid can be found by performing a Bogoliubov 
transformation on the normal-state interaction. The Bogoliubov transformation 
between the normal quasi-particle creation operator a i o  and annihilation operator 
and the creation operator and annihilation operator ap,u in the superfluid state is 

a p . ,  = 2 upoBap,p,p - vpopa+p,p a;,, = U$+;,@ - v$;a-p,p (14) 
P B 

where the matrix elements UP, and V!@ can be chosen for the ABM state as 

up, = [3(1 + EP/EP)ll’* 6 ,  vp, = [1(1 - &p/Ep)]1’2snp (15) 
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where E,, = (e; + lA,,12)1'2, IApl = A(T) sin e,,, A(T) is the maximum gap and e,, is the 
angle between the quasi-particle momentum and gap axis f. Hence, if the Hamiltonian 
for the binary collision process in the normal state is written in terms of the Bogoliubov 
quasi-particle operators ap, o, one can easily see that 

x (u1a1 - VlLY?I)(U2&* - V2a?2) (16) 
which contains terms ai a: a ? 2 a l ,  aqf a1 m-3~~2 ,  aqf a: a 2 a 1 ,  a; a: ( Y I ~ L Y ? ~  and 
~ ~ - 4 a - 3 ~ ~ 2 a I .  These terms convert a quasi-particle into three, convert three quasi-par- 
ticles into one, convert two quasi-particles into two, create four quasi-particles from the 
condensate and scatter four quasi-particles into the condensate, respectively. The last 
two processes are not allowed, because in each process the total energy should be 
conserved. The linearised collision term in the Boltzmann equation due to the two- 
quasi-particle scattering, decay and coalesce processes, respectively, may be written as 

where the transition probability of the decay process, for example, may be written as 

W13 = I(. * .; P3, a; P4, a'; -P2, -a';. . . l v / .  . .; P I ,  a; .  . .)I2 (20) 
where, in general, Vcan be written as 
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where we put q = 0. It can be shown [9] that, at low temperatures, sin OPi = 0 (i = 1 ,2 ,  
3,  4). By substituting sin 8,, = 0 into equation (22), we see that only W22( t 1 ) = /Vo/2 
is non-zero and the other transition probabilities are zero; hence the two-quasi-particle 
process dominates in the collision integrals at low temperatures. The expression for 
z&ltlPl = 0 at low temperatures is therefore nearly the same as the normal state with 
the exception that the integration on the angle 8 is now from zero to 8, (for the value 
of 0, see below). The integration on energies can be done exactly [8] and we have 

t;:lepl z 0 = (1G82,/256&,)A~[(7Gk~T)~ + E;,]/[l + exp(-E,,/kBT)] (23) 

where the dimensionless singlet component A, = &SI can be expressed in terms 
of the spin symmetric (and anti-symmetric) Landau parameters F;(and FP) by 
SI = A f  - 3A7 with 

AY,a = Ff,a/[l + FS,'/(21 + l)]. (24) 
By comparison of the terms Epl and 7 ~ k g  Tin the numerator of equation (23), we may 

write [lo] E,, = ZkgT, and A(0)Oplm = XkgT, which gives 8, = OPl,  = nkBT/A(0). 
In [ l l ]  and in [12] on the basis of a scaling argument, and using equations (12) and 

(13), respectively, z;: was estimated to be proportional T4, which can be obtained from 
equation (23) if we put Epl = 0 and 8, T. At extremely low temperatures, say 
TIT, S T,/TF, in [ l l ]  on the basis of a scaling argument and using equation (12), z;: 
was found to be proportional to T5, but our approach in obtaining tgl cannot be used in 
this range of temperatures. 

By substituting zpl from equation (23) into equation (10) and carrying out the 
integration over t = PEp numerically, we have 

K,, = 6.17(nV$/A:T)[1 + 0.72A;/(3 -A;)] (25) 
K l  = 15.24(nV~/A%T)[(kBT)2/A2(0)][1 + 0.72/2;/(3 - A;)]. (26) 

In [12] by using a simple relaxation time, i.e. A; = 0, and on the basis of a scaling 
argument for the evaluation of the temperature dependence of zp, it was estimated that 
K ~ I  cc T-2 and K ,  CC To. Presumably the difference between these results and equations 
(25) and (26) with A; = 0 might come from the fact that in [12] a different formula was 
used for K,  from ours (equation (10) (with A; = 0)); this is not clear from their letter 
[I21 * 

4. Discussion and concluding remarks 

As we discussed previously, the measurement of the components of thermal conductivity 
is more meaningful at low temperatures than in the vicinity of T,. The thermal coefficients 
KII and K ,  have been obtained in equations (25) and (26) with temperature dependences 
T-' and T, respectively, at low temperatures if A; is taken to be a constant parameter 
with respect to temperatures (see below). These results can be estimated on the bases 
of a scaling argument from equations (13) and (10). As is clear from equations (25) 
and (26), the diffusive thermal conductivity components depend on the values of the 
parameter A; (defined in equation (6)). In the calculations of the diffusive thermal 
conductivity of the B phase in [3], A; (which can be determined from other experiments) 
was used as a parameter. In [2] the various theoretical results for the normalised 
quantity KT/K,T, were collected as a functionof reduced temperature; these are strongly 
dependent on the value of A ; . The various values of A ; arise because of the different 
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sources of evaluation of the Landau parameters. Despite the temperature independence 
of A; in the B phase, in the A phase the values of A; at low temperatures (T /Tc< 1 )  
play an important role in determining the temperature dependence of the thermal 
coefficients Kll and K,. By using equation (6)  and keeping in mind that the variable 8 
varies between zero and 8, = nkgT/A(0) ,  we get 

A i  = 3 - ( x ~ B T ) ~ / ~ A ~ ( O ) .  (27) 
By substituting equation (27) in equations (25) and (26), we have, for low temperatures 
(TcITF< T I T S  11, 

K I ~  = 2.70 nV;A2(0) /A2kiT3  (28) 

K ,  = 6.67nV;/A;T. (29) 
It is interesting to note that the temperature dependence of K ,  at low temperatures 

is the same as the diffusive thermal conductivity of the B phase. The temperature 
dependence of the thermal coefficients Kli and K ,  at extremely low temperatures 
(T/Tc < Tc/TF) can be estimated from equation (10) and equation (12) by using the 
scaling argument. The results are Kli cc T-4 and K ,  CC T2.  
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